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Abstract This article provides a method for calculating the joint probability density
for the topology and the node times of a tree which has been produced by an multi-
type age-dependent binary branching process and then sampled at a given time. These
processes are a generalization, in two ways, of the constant rate birth-death process.
There are a finite number of types of particle instead of a single type: each particle
behaves in the same way as all others of the same type, but different types can be-
have differently. Secondly, the lifetime of a particle (before it either dies, changes
to another type, or splits into two) follows an arbitrary distribution, instead of the
exponential lifetime in the constant rate case. Two applications concern models for
macroevolution: the particles represent species, and the extant species are randomly
sampled. In one application, 1-type and 2-type models for macroevolution are com-
pared. The other is aimed at Bayesian phylogenetic analysis where the models con-
sidered here can provide a more realistic and more robust prior distribution over trees
than is usually used. A third application is in the study of cell proliferation, where
various types of cell can divide and differentiate.
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1 Introduction

Branching processes have a long history as models for various biological processes
and structures [26]. The models considered here have been studied by mathematicians
for over 50 years [7,8]. Their asymptotic properties are well understood, but in bio-
logical applications, the time scales are often such that the behavior of the processes is
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quite different from the asymptotic behavior. Also, for some applications, notably the
evolutionary process, detailed information about the process is required. For exam-
ple, in applications in macroevolution and phylogenetic analysis, the probabilities of
different tree topologies may be required. (The tree topology is the branching pattern
ignoring the node times.) This article is aimed at providing a practical computational
method for finding the probability that a particular tree is generated by such a process.
Three motivating examples are described next. After dealing with the mathematical
and computational aspects in Sect. 2 and Sect. 3, the examples are revisited in Sect. 4.

1.1 Macroevolution

The Tree of Life has many nodes in which one of the two subtrees rooted at that node
is much larger than the other. A well-known example is the 22 Crocodylla (crocodiles,
alligators and gharials) versus the 10,000 or so birds. A node like this is called ‘un-
balanced’ and there are various statistics (Colless, Sackin, etc) which measure the
degree of imbalance in a tree or a collection of trees. Since the constant rate birth-
death model produces trees which are too balanced to match empirical phylogenetic
trees, there has been considerable interest in more complex models [2,4,10,16,20,28,
27,35,39]. Age-dependent models (also known as Bellman-Harris processes) were
considered in [1,19,24]. In [19] some formulas for tree probabilities are given, but
restricted to the case where there are no extinctions or sampling, and only one type.

It is unclear in most cases whether the imbalance at a node is due to specific
biological reasons (for example a trait such as flight possessed by one of the two
groups of species) or whether evolution is just a particular kind of random process
which regularly produces this type of imbalance. A suitable ‘null’ model is desirable
in order to test hypotheses of this kind.

Another major issue is that of obtaining estimates for rates of extinctions. Some-
times fossil evidence for species duration is available, so that the extinction rate can
be estimated directly. If there is only fossil evidence for the age of a clade then the
diversification rate can be estimated, but without a model for the evolutionary pro-
cess, the speciation rates and extinction rates cannot be separated [12, Chapter 12].
If a model of the kind discussed here is assumed, a distribution for the node times in
the tree can be found, and then the relative rates of speciation and extinction can be
estimated along the lines of [42,43].

Models for macroevolution can broadly be classified in terms of how much of the
rest of the tree influences the behavior of a given species. The constant rate birth-
death process is the simplest, where every species at every point in time behaves in
the same way.

An age-dependent process with a single type means that the behavior of a species
depends on the time since it diverged, but on nothing else. In particular, nothing
is inherited from its ancestors. Imbalance can arise with a suitable distribution for
lifetimes. Consider the tree process in Fig. 1. Each of the random variables Yi is
independently drawn from the same distribution. There are currently three tips, and
the balance of the tree depends on which of the three tips divides next. If one of the
two branches on the left divides, then there will be a 3:1 (unbalanced) split at the
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root, otherwise a 2:2 (balanced) split. In the constant rate birth process, where the Yi

follow an exponential distribution, each of the branches has an equal probability of
dividing, so the probability of a 2:2 split is 1/3. If the Yi follow another distribution,
this may be different. In general, the probability of a 2:2 split is

Pr[min(Y1, Y2) + min(Y3, Y4) > max(Y1, Y2)]

min(Y1,Y2)

max(Y1,Y2)

Y3 Y4

Fig. 1 A tree with 3 tips generated by a pure birth process. The Yi are random variables giving the lengths
of the branches.

If the Yi follow a gamma distribution with shape parameter 0.5, this probabil-
ity is about 0.24 instead of 1/3 if Yi follows an exponential distribution. In general,
distributions which have a higher probability of producing very small and very large
values, result in more unbalanced trees [24]. The term ‘L-shaped’ is used to describe
such distributions. Examples include a gamma distribution with shape parameter less
than one, a mixture of two exponential distributionswith different scales, and a Pareto
distribution which will be illustrated later.

By introducing different types of species, the behavior of a species can depend on
its ancestors. For example, a fast diversifying type could model a species with a key
innovation, while a slow diversifying type represents an ‘ordinary’ species. Sect. 4.1
compares a 1-type model and a 2-type model.

1.2 Phylogenetic Analysis

A closely related application is in Bayesian phylogenetic analysis. Two well-known
programs for performing Bayesian phylogenetic analysis are MrBayes [21] and BEAST
[14]. The former uses unrooted trees in which branches have a length measured in
terms of substitution rates. This allows the topology to be estimated, but does not



4

provide dates of nodes. On the other hand BEAST uses rooted trees with a strict or
relaxed molecular clock and does estimate node times measured in years.

In both cases a prior for the distribution of trees is required. MrBayes uses the
uniform or ‘proportional to distinguishable arrangements’ (PDA) prior for topologies.
The term PDA applies both to the unrooted trees used by MrBayes and to those
trees after they have been rooted within any branch. The PDA distribution produces
unbalanced rooted trees. For example, in the 4-tip case, it gives a probability of 1/5 to
a 2:2 split, and 2/5 to a 1:3 or 3:1 split. BEAST uses a prior based on the constant rate
birth-death model. This results in a joint distribution for topology and node times.
The distribution over tree topologies is the same as for the constant rate pure birth
model [4], thus the probability of a 2:2 split in the 4-tip case is 1/3.

The choice of prior has been controversial ([15, Chapter 18], [11,33,34,44]).
However, the distribution of topologies in real phylogenetic trees is known quite well
and is surprisingly homogeneous across many different parts of the Tree of Life [10,
24]. In particular, the empirical trees are more balanced than the PDA prior used in
MrBayes, and less balanced than the prior used in BEAST. It makes sense to use
this information when undertaking a phylogenetic analysis, and this should not be
controversial, even to those who object to Bayesian methods.

It is easier and more natural to deal with the case of rooted trees with a strict or
relaxed molecular clock (as used in [13,30] for example) and so this article concen-
trates on rooted trees with node times (divergence times) measured in years. I will call
the duration of a branch an ‘internode time’ to avoid confusion with branch lengths
measured in terms of substitution rates.

t0
t1

t2

t4
t3

Present

Ti
m

e 
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t

Fig. 2 A tree with 5 species appearing in the sample. Dotted lines indicate branches which either go extinct
before the present, or reach the present but are not sampled. The solid lines constitute the reconstructed
tree. The ti are node times.

Researchers almost never see the entire tree. Extinctions and sampling of extant
species mean that the tree that a phylogenetic analysis attempts to infer (the recon-
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structed tree) is only a part of the full tree as shown in Fig. 2. It is difficult to model
mathematically the way researchers choose taxa, but it is important to note that even
unbiased sampling affects the distribution of trees. If species are sparsely sampled,
this will change the distribution for node times [42,43,38], and may well affect the
distribution over topologies [20,24], when compared to reconstructed trees arising
from densely sampled species. Thus, despite the difficulty, it is important to make an
attempt at modeling the sampling.

Currently, the amount of reliable empirical data about the distribution of node
times is small, and until more good quality data is available, it seems best to make the
prior robust in the sense that it should not make extreme values (very short or very
long internode times) too unlikely. A distribution more L-shaped than the exponential
distribution for species lifetime seems appropriate. See [9, Section 4.7] for a general
discussion of robustness in Bayesian analysis, and [44] for an investigation into the
effects of priors on branch lengths in the context of unrooted trees.

A good prior distribution on trees for Bayesian phylogenetic analysis would (a)
provide a distribution over topologies which matches the observed degree of balance,
(b) provide a suitably robust (L-shaped) distribution over node times for varying rates
of extinction and varying rates of sampling, and (c) be mathematically tractable in the
sense that the probability of observing a particular tree given the prior can be read-
ily calculated. There is currently no distribution satisfying all these criteria. Models
such as those of Aldous [2], Ford [16] and Blum and François [10] satisfy (a) and
(c), but the first two provide no node times, and none of them model extinctions.
The much-studied constant rate birth-death model [3,32,37,42,43] satisfies (c) and
mostly satisfies (b) (though a more L-shaped distribution seems preferable), but pro-
duces trees which are too balanced to match empirical trees. Many models which
simulate the macroevolutionary process in computer programs can satisfy (a) and (b)
with suitable choice of parameters, but there is no sensible way of calculating the
probability that a particular tree could be generated by the program. The processes
studied here can satisfy (a) and (b), and Sect. 4.2 tackles the calculation of probabil-
ities for them. These calculations are still slow for use in phylogenetic analysis with
large trees, but not impossibly slow.

1.3 Cell proliferation

Multi-type age-dependent binary branching processes have often been used as mod-
els of the kinetics of populations of dividing and differentiating cells [23,26,31,41].
In general the methods used have been based on simple models where analytic re-
sults are available; asymptotic results for more complex models; or computer simula-
tions. All of these have disadvantages [22]. A numerical method based on saddlepoint
approximations is developed in [22], which provides a way of calculating moments
(such as means, variances, and covariances) of the numbers of cells of different types.
The method presented here (Sect. 4.3) provides an alternative. The two approaches
are complementary: the present approach provides more detailed information at the
cost of a greater amount of calculation. It can answer questions such as “What is the
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probability that a single cell of type A gives rise to more than n cells of type B in a
given time t?”.

2 The Main Equations

In the models considered here, each particle of a given type has the same lifetime
distribution, and at the end of its lifetime (an event I will call termination) a particle
either produces two particles (division), or none (extinction). These restrictions help
to simplify the formulas, and more complex situations such as those considered in
[23] can be modeled in this framework by using unobserved types. For example, in
some applications one might want to allow the possibility that a particle changes type
without dividing. This can be modeled as a special kind of division which produces
one particle of a different type, and another particle of a special type which either goes
extinct immediately, or which, by definition, is never observed. In other applications
one might want to have different lifetime distributions for particles which divide and
for those which go extinct. This too can be dealt with using extra types.

Assume there are r types of particles (e.g. species or cells) labeled 1, . . . , r. A
single particle of some type i is born at some time t in the past. I will call this particle
the ancestor. Time is measured backwards from the present which is taken to be time
zero. The particle lives for a random period x determined by a distribution F (i)(x)
with support [0,∞), and then at time t − x it either divides with probability p(i),
or becomes extinct with probability 1 − p(i). The types of a new pair of particles
is chosen according to the discrete probabilities ξ(i)(j, k) (1 ≤ i, j, k ≤ r). Here
ξ(i)(j, k) is the probability that when a particle of type i divides, the ‘left’ descendant
has type j and the ‘right’ descendant has type k. The labels ‘left’ and ‘right’ are
just to facilitate counting and have no biological significance; ξ(i)(j, k) = ξ(i)(k, j)
always. This means that the trees are ‘oriented’ trees as described in [17,18]. At any
point in time, all particles behave independently of one another. The only dependence
between particles is captured in the ξ(i)(j, k). At time zero, each particle that is still
alive is randomly and independently sampled with a probability q. Together, F (i),
p(i), ξ(i)(j, k) (1 ≤ i, j, k ≤ r), and q determine the model. See Fig. 3.

In the multi-type case, the ξ(i)(j, k) can be chosen to allow particles to inherit
properties from their parent particles. For example, a fast diversifying species may
tend to have fast diversifying descendants. The random sampling at time zero models
the choice by researchers of some species from a clade, as discussed in Sect. 1.2.

It will be assumed that F (i)(0) = 0 for all i, that is, there is zero probability of
a two or more simultaneous divisions. It will also be assumed that each F (i)(x) has
a derivative f (i)(x) for x > 0. It is possible to develop the theory with more general
distributions, but this is not likely to be of biological interest. When there is only one
type, the superscripts will be dropped, so that F = F (1), and so on. Note that the
assumptions on F (i)(x) mean that the probability of two or more events occuring in
[s, s + δs) is of order δs2.

The following functions give the probabilities of certain events that the ancestor
may produce. P

(i)
n (t) is the probability that exactly n descendants of the ancestor

appear in the sample. For convenience set X(i)(t) = P
(i)
0 (t) and L(i)(t) = P

(i)
1 (t).
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Particle of type i is born

Lifetime given by F(i)

type j type k

Two new particles of types j and k

produced with probability p(i)ξ(i)(j,k)

Extinction occurs

with probability 1 − p(i)

t

w

x

Fig. 3 The model with the main parameters, and the variables t, x, and w.

Next, functions b(i)(s, t) for 0 < s ≤ t provide the probability that some de-
scendant of the ancestor of type i divides at a time s, and that the ancestor produces
no other particles which appear in the sample. More formally, let ∆(x) be the set of
particles extant at time x which are descendants of the ancestor. Let δs be a short
interval of time. Then in the limit as δs → 0, b(i)(s, t)δs is the probability that one
member of ∆(x) divides with x ∈ [s, s + δs) and that no other member of ∆(x)
leaves a particle in the sample.

t

s

? ?

Fig. 4 Illustration for b(i)(s, t).

Fig 4 illustrates the meaning of b(i)(s, t). For each i, the function b(i)(s, t), re-
garded as a function of s for fixed t, can be seen as the density of ‘candidate’ nodes
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in the reconstructed tree which may be produced by the ancestor. A candidate node
is a node which is produced as the tree grows, and which will appear in the recon-
structed tree as the most recent common ancestor of the species in the sample, if and
only if both its descendants leave species in the sample. Whether a candidate node at
s becomes a node in the reconstructed tree depends on the fate of the two particles
born at s, but not on any other part of the tree. Regarded in this way, b(i)(s, t) is not
a probability density since the event may happen more than once at different values
of s, or not at all.

The next step is to find integral equations satisfied by these functions, starting
with X(i)(t). It may help to refer to Fig. 3. The particle born at t may live without
terminating until the present, and then fail to be sampled, which happens with prob-
ability (1 − q)(1 − F (i)(t)). Otherwise there is a termination, and the first one is
at some time w ∈ [0, t]. If this termination is an extinction, there will be nothing
appearing in the sample, and the probability of this is

∫ t

0

(1 − p(i))f (i)(t − w)dw = (1 − p(i))F (i)(t).

Finally, if the termination at w is a division, then both new particles must produce
zero particles in the sample. If the two new particles, distinguished as ‘left’ and
‘right’, are of types j and k, the probability that nothing appears in the sample is
X(j)(w)X(k)(w). Thus

X(i)(t) = 1 − q + (q − p(i))F (i)(t) +

p(i)

∫ t

0

f (i)(t − w)

r
∑

j=1

r
∑

k=1

ξ(i)(j, k)X(j)(w)X(k)(w)dw (1)

The integral equations for the L(i)(t) are found in a similar way. The ancestor
may live without terminating until the present, and then be sampled, which happens
with probability q(1 − F (i)(t)). Otherwise there is a termination, the first one is at
some time w ∈ [0, t], and this must be a division. Then one particle born at w must
produce zero particles in the sample, and the other must produce exactly one (but it
does not matter which particle does what). Thus

L(i)(t) = q(1 − F (i)(t)) +

2p(i)

∫ t

0

f (i)(t − w)

r
∑

j=1

r
∑

k=1

ξ(i)(j, k)X(j)(w)L(k)(w)dw (2)

For P
(i)
n (t) when n ≥ 2 at least one speciation must occur in [0, t] and so

P (i)
n (t) = p(i)

∫ t

0

f (i)(t − w)

n
∑

m=0

r
∑

j=1

r
∑

k=1

ξ(i)(j, k)P (j)
m (w)P

(k)
n−m(w)dw. (3)

This can be rewritten as
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P (i)
n (t) = p(i)

∫ t

0

f (i)(t − w)

n−1
∑

m=1

r
∑

j=1

r
∑

k=1

ξ(i)(j, k)P (j)
m (w)P

(k)
n−m(w)dw +

2p(i)

∫ t

0

f (i)(t − w)

r
∑

j=1

r
∑

k=1

ξ(i)(j, k)X(k)(w)P (j)
n (w)dw. (4)

which shows that once the P
(i)
m are known for m < n, this is an equation for P

(i)
n of

similar form to that for L(i).
It is also possible to write down equations for the probabilities of numbers of

different types in a similar fashion. For example, if there are two types and P
(i)
ab (t)

is the probability that there are a of type 1 and b of type 2 produced by the ancestor,
then there are equations for all a, b ≥ 0 and all types i.

Finally consider b(i)(s, t). The particle born at t may live without terminating
until s, and then divide at s. Otherwise there is a termination before s, the first one is
at some time w ∈ [0, s), which must be a division. Then one particle born at w must
produce zero particle in the sample and the other must lead to a division at s. Thus

b(i)(s, t) = p(i)f (i)(t − s) +

2p(i)

∫ t

s

f (i)(t − w)

r
∑

j=1

r
∑

k=1

ξ(i)(j, k)X(j)(w)b(k)(s, w)dw (5)

3 Solving the Integral Equations

3.1 Some General Observations

Equations (2), (3), and (5) are of a type known as Volterra integral equations. Equa-
tion (1) is more complex since products of the X (i) appear in the integral. The key
feature that makes all these equations relatively easy to solve numerically is that all
the integrals are convolutions, which means that they can be carried out efficiently
using Fourier transforms.

Equations (1), (2), (3), and (5) each have a unique solution as made precise by the
following theorem.

Theorem 1 Equations (1), (2), and (3) each have a solution (that is, a set of solutions
for 1 ≤ i ≤ r) for X(i) , L(i), and P

(i)
n respectively. Under the further assumption

that the f (i) are bounded, (5) has a solution for b(i). All these solutions are unique
among bounded functions.

In the single-type case, the solution to equation (1) has X(0) = X (1)(0) = 1− q,
the probability that a particle which reaches the present is not included in the sample.
The asymptotic behaviour of X(t) is described by the following theorem.
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Theorem 2 In the single-type case with p > 1/2, X(t) → (1 − p)/p as t → ∞.
Furthermore, X is monotonic, either increasing from 1 − q to (1 − p)/p if 1 − q <
(1 − p)/p, decreasing from 1 − q to (1 − p)/p if 1 − q > (1 − p)/p, or remaining
constant if 1 − q = (1 − p)/p. If p ≤ 1/2 then X(t) increases monotonically to 1 as
t → ∞.

3.2 A Special Case: The Constant Rate Birth-Death Process

In the constant rate birth-death process, there is only one type, and F (t) = 1 −
exp(−αt) for some α > 0 so that the division rate is αp and the extinction rate is
α(1 − p) for all species at all times.

Theorem 3 Under the constant rate birth-death model equations (1), (2), (3), and (5)
have solutions X̃ , L̃, P̃n, b̃ for X , L, Pn, b respectively, as follows. In the non-critical
case, when p 6= 1/2, then

X̃(t) =
q(1 − p) + (2p − 1 − qp)e(1−2p)αt

D(t)

L̃(t) =
q(2p − 1)2e(1−2p)αt

D(t)2

P̃n(t) = L̃(t)

(

pq(1 − e(1−2p)αt)

D(t)

)n−1

b̃(s, t) = αpL̃(t)/L̃(s)

where D(t) = qp + (2p− 1− qp)e(1−2p)αt. In the critical case when p = 1/2, then

X̃(t) = 1 −
q

1 + pqαt

L̃(t) =
q

(1 + pqαt)2

P̃n(t) = L̃(t)

(

pqαt

1 + pqαt

)n−1

b̃(s, t) = αpL̃(t)/L̃(s)

3.3 Numerical solutions

Equations (1), (2), (3), and (5) can be solved numerically by an iterative procedure
which uses the same idea as the proof of Theorem 1 (see Sect. 6). For example, for
L(i)(t), set L

(i)
0 (t) = q(1 − F (i)(t)), and define

L
(i)
m+1(t) = L

(i)
0 (t) + 2p(i)

∫ t

0

f(t − w)

r
∑

j=1

r
∑

k=1

ξ(i)(j, k)X(j)(w)L(k)
m (w)dw (6)
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for m ≥ 0 and 1 ≤ i ≤ r. Thus all the L
(i)
1 are found, then the L

(i)
2 , and so on. The

proof of Theorem 1 guarantees that this method converges to a unique solution, but
does not give bounds on the speed of convergence.

Equations (5) can be regarded as a set of equations in one variable, one for each
fixed s. To make this explicit, let c

(i)
s (x) = b(i)(s, s+x) so that b(i)(s, t) = c

(i)
s (t−s)

and X
(i)
s (x) = X(i)(s + x), equation (5) can be written as

c(i)
s (x) = p(i)f (i)(x) +

2p(i)

∫ x

0

f (i)(x − w)

r
∑

j=1

r
∑

k=1

ξ(i)(j, k)X(j)
s (w)c(k)

s (w)dw

where the c
(i)
s are functions of one variable.

The integrals in all cases are convolutions, and the FFT can therefore be used to do
these, but this does mean that time must be discretized into equal steps. Experience
so far indicates that the method usually converges to double-precision accuracy in
around one hundred iterations if the process is not close to critical (either sub-critical
or super-critical). For processes that are close to critical, more are needed. In general,
the discretization of time produces a larger error, so the main speed-accuracy trade-off
is in choosing the length of the time step. For most of the results presented here 214

time steps were found to be enough to achieve errors of one percent or less. Equation
(3) must be solved successively for P

(i)
2 , P

(i)
3 , .... This might be expected to lead to

numerical problems, since errors can accumulate. In practice this does not seem to
happen.

4 Illustrations of Use

4.1 Models for macroevolution

When considering tree topologies only, with no node times, the balance can be de-
scribed in terms of splitting probabilities [2]. These are probabilities s(n, m) for each
n = 2, 3, 4, ..., and each m with 1 ≤ m ≤ n − 1 which give the probability that a
node with n tips splits as m : n − m, so that the ‘left’ descendant has m tips and
the ‘right’ descendant has n − m tips. Thus for the example in Sect. 1.1 with 4 tips,
s(1, 3) = s(2, 2) = s(3, 1) = 1/3 for the case of the exponential distribution, while
s(1, 3) = s(3, 1) ≈ .38 and s(2, 2) ≈ .24 for the gamma distribution with shape pa-
rameter 0.5. In the branching processes considered here, these probabilities are also
functions of time: it is possible that an ancient node with n tips has different splitting
probabilities to a recent node of the same size. For the one-type case, the functions
Pm(t) were found for 1 ≤ m ≤ n, and the following formula holds when assuming
a uniform prior for t.

s(n, m) =

∫ ∞

0
Pm(t)Pn−m(t)dt

∑n−1
k=1

∫ ∞

0
Pk(t)Pn−k(t)dt
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For the two-type case, the following formula holds when assuming a uniform prior
for t.

s(n, m) = η1

∫ ∞

0
P

(1)
m (t)P

(1)
n−m(t)dt

∑n−1
k=1

∫ ∞

0
P

(1)
k (t)P

(1)
n−k(t)dt

+ η2

∫ ∞

0
P

(2)
m (t)P

(2)
n−m(t)dt

∑n−1
k=1

∫∞

0
P

(2)
k (t)P

(2)
n−k(t)dt

The values η1 and η2 are the asymptotic proportions of the two types, described later.
The resulting splitting probabilities summarize the shape of the topologies produced
by the process.

1−type

0

0.1

s(n,m)

1 50m

2−type

q=1 q=1

q=0.1 q=0.1

q=0.01 q=0.01

q=0.001 q=0.001

Fig. 5 Splitting probabilities s(n, m) for two macroevolution models with n = 51 tips, for several values
of q, the sampling probability for extant species. The ‘1-type’ models are age-dependent but single type,
while the ‘2-type’ models have two types but individual species behave in an age-independent manner.
The vertical scale in each graph runs from 0 to 0.1 with ticks at intervals of 0.02. For comparison, note
that in the constant rate birth-death model s(n, m) = 1/(n − 1) = 0.02 for all q.
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Fig. 5 shows the splitting probabilities for two models. The parameters are chosen
as follows. Since apart from mass extinctions and their aftermath, the total number of
species increases slowly, models for macroevolution should be super-critical but close
to critical. If they are too close to being critical, the expected time for a large tree to be
produced becomes unrealistically long. [12, Table 12.1] has a list of about 60 groups
of species together with estimated diversification rates. There is a large range but the
median value is about 0.17 My−1. An extinction rate of around 0.25, corresponding
to an expected species duration of 4 My can be estimated from [29,25]. Together this
gives a ratio of extinction rate to speciation rate of 0.25/(0.25 + 0.17) ≈ 0.6. The
data in [25, Fig. 4] for 12 groups of species gives a ratio of about 0.65. Others have
estimated higher values, often around 0.9 (e.g. [6,5]). A compromise is chosen here:
the probabilities for speciation at termination for the models were set to 0.55, giving
a ratio of extinction rate to speciation rate of 0.45/0.55 ≈ 0.8. The other parameters
were chosen to approximately match the degree of imbalance observed in empirical
trees.

The single-type models have a lifetime distribution given by a Pareto distribution
with cumulative distribution function F (x) = 1 − (1 + x)−2 and density f(x) =
2(1 + x)−3. As mentioned above, p = 0.55.

The 2-type models have types 1 and 2 (‘fast diversifying’ and ‘slow diversifying’)
both of which have exponential lifetime distributions. There are 6 parameters. p1

and p2 are the respective probabilities of division upon termination. v1 and v2 are
parameters for the lifetimes. c12 gives the probability that a parent of type 1 produces
a descendant of type 2 (independently for both descendants) and similarly for c21. In
the notation of Sect. 2, p(i) = pi, f (i)(t) = vi exp(−vit), ξ(1)(1, 1) = (1 − c12)

2,
ξ(1)(1, 2) = ξ(1)(2, 1) = c12(1− c12), ξ(1)(2, 2) = c2

12, with similar expressions for
the ξ(2)(i, j) (1 ≤ i, j ≤ 2). The values p1 = p2 = 0.55, c12 = c21 = 0.1, v1 = 3.0
and v2 = 0.3 were used for the 2-type model. Thus the fast type is ten times as fast
as the slow type.

From results in [7, Section V.7] the asymptotic proportion of the two types 1 and
2 can be found from a matrix R. Rij is the expected rate of production of particles of
type j from a single particle of type i. In this case,

R =

(

[2p1(1 − c12) − 1]v1 2p1c12v1

2p2c21v2 [2p2(1 − c21) − 1]v2

)

The left eigenvector of R corresponding to the largest eigenvalue λmax gives the
asymptotic proportion (η1, η2) of the two types, and the root was assumed to have a
type chosen at random from the two types according to this proportion. The process
is critical if λmax = 0, and supercritical if λmax > 0.

The results show that the balance of the single-type age-dependent models in-
crease as the trees are more sparsely sampled, that is, as q tends to zero. The same
trend for the 1-type case was observed with results using other L-shaped lifetime dis-
tributions (results not shown) and is accordance with results derived from simulations
in [24]. In the 2-type case, balance initially decreases slightly as q is reduced, and then
increases slightly. This initial decrease followed by an increase seems typical for 2-
type models for other values of the parameters, although the amounts of the change
and the values of q at which they occur can vary considerably (results not shown).
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Currently, there is insufficient data to be certain about what behavior is typical of
empirical species trees. However it does seem clear that balance does not decrease
with sampling, so that the 1-type models are unsuitable, under the assumption that
sampling is uniformly at random.

4.2 Phylogenetic Analysis

Once L(t) and b(s, t) are known, it is possible to calculate the probability of observ-
ing a reconstructed tree. Denote the tree topology by τ , the number of tips by |τ |,
and the internal node times by T = t1, ...t|τ |−1. The formulas below provide the
conditional joint density π(τ, T | i, t) for the complete process of a multi-type age-
dependent branching process initiated with a species of type i born at t0 = t, and
then sampled uniformly at time 0. The density of the tree is found recursively, as in
[19]. When |τ | > 1 the topologies and node times of two subtrees are denoted by
(τa, Ta) and (τb, Tb). For |τ | > 1 the result is

π(τ, T |i, t) = ν(τ )b(i)(t, s)

r
∑

j=1

r
∑

k=1

ξ(i)(j, k)π(τa, Ta|j, s)π(τb, Tb|k, s)) (7)

and for |τ | = 1 it is

π(τ, T |i, t) = L(i)(t) (8)

where s is the time of the first speciation, and ν(τ ) is 2 if the two subtrees are dis-
tinguishable, and 1 otherwise. Note that the existence of the derivatives f (i) of F (i)

implies that the probability of two nodes having exactly the same time is zero. This
means that the two subtrees at each node are distinguishable except in the case of a
cherry (ie where both subtrees are single branches). Even in the case of a cherry, ν(τ )
is 2 if there is more than one type and they are distinguishable.

If there is only one type, the result simplifies to

π(τ, T |t) = 2n−1−m
∏

i∈E

L(ai)
∏

i∈I

b(di, ai) (9)

where m is the number of cherries, E is the set of external branches, I is the set of
internal branches, and branch i begins at time ai and ends at time di (each of which
is equal to one of t1, ...tn−1).

The formulas above are given for a tree initiated by a single particle. The birth of
this particle is called the tree origin [18]. In phylogenetic analysis, the tree is usually
modeled as starting at the first division, that is, the tree root. One can obtain the
probability for a tree started at the root by multiplying the probabilities for the ‘left’
and ‘right’ subtrees which both have origins at the root.
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4.3 Cell proliferation

A model for the generation of oligodendrocytes (brain cells) from their immediate
progenitor cells (stem cells) is used as an illustration. The model is the ‘full model’
taken from [22], using parameter values as estimated there. There are 4 cell types,
which I label A2, A1, A0, and B, where A2, A1, A0 represent oligodendrocyte-type
2 astrocyte progenitor cells, and B represents oligodendrocytes. The subscripts on the
As are the number of cell cycles the cell must go through before it is competent to
produce a oligodendrocyte. Type A2 always divides, and produces two A1 cells after
a lifetime distributed as a gamma GA. Type A1 is very similar: it always divides, and
produces two A0 cells after the same lifetime distribution GA. Type A0 has more
complex behaviour. With probability p, an A0 cell produces two more type A0 cells
after a lifetime distributed as GA. With probability 1 − p it differentiates into a type
B after a lifetime distributed as a different gamma GB . Type B cells have an infinite
lifetime. At the start of the experiment, a mixture of types A2, A1, A0 is present.

An alternative but equivalent way of describing the behaviour of the A0 cells is
to regard them as being of two types A0A, and A0B . These are produced by type A1

cells in proportion p : 1 − p. A0A cells always produce more A0A and A0B cells,
again in proportion p : 1 − p, while A0B cells always produce B cells. This way
of looking at the situation makes the model fit into the scheme described in Sect. 2.
However, I will use the former description where there is a single complex type A0

in the following.
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Fig. 6 These graphs show the predicted mean cell counts for cell types A and B. In both cases, results using
512 and 4096 time steps are superimposed, demonstrating that 512 time steps provides good accuracy.

There are no cell deaths, and in the notation of Sect. 2, q = 1, so that X (i)(t) =
0 for all types, which simplifies the situation. The following probabilities can be
defined. Let Pab(t) be the probability that a single type A0 cell produces a cells of
type A0 and b of type B after a time t. Let Pjab(t) be the probability that a single type
A1 cell produces j cells of type A1, a cells of type A0 and b of type B. Let Pijab(t)
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Fig. 7 The predicted probabilities for the behavior of a single type A cell over 1,2,4 and 8 days. The area
of each rectangle shows the proportion of cells predicted to produce the numbers of type A and B cells.
The mean values are also shown.

be the probability that a single type A2 cell produces i cells of type A2, j cells of
type A1, a cells of type A0 and b of type B. It can be seen that these probabilities are
zero except for the following cases.

P10(t) = p(1 − GA(t)) + (1 − p)(1 − GB(t))
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P01(t) = (1 − p)GB(t)

Pab(t) = p

∫ t

0

gA(t − w)

a
∑

i=0

b
∑

j=0

Pij(w)Pa−i b−j(w)dw (a + b > 1)

P100(t) = 1 − GA(t)

P0ab(t) =

∫ t

0

gA(t − w)
a

∑

i=0

b
∑

j=0

Pij(w)Pa−i b−j(w)dw (a + b > 1)

P1000(t) = 1 − GA(t)

P0200(t) =

∫ t

0

gA(t − w)(1 − GA(w))2dw

P01ab(t) = 2

∫ t

0

gA(t − w)(1 − GA(w))P0ab(w)dw (a + b > 0)

P00ab(t) =

∫ t

0

gA(t − w)

a
∑

i=0

b
∑

j=0

P0ij(w)P0 a−i b−j(w)dw (a + b > 1)

These can be calculated for a range 0 ≤ a + b ≤ M . Approximately 3M 2/2
convolutions are required. Fig. 6 shows the mean counts for type A (types A2, A1,
A0 combined) and type B over a period of 8 days. These correspond to the lower two
panels of Figure 2 in [22]. Fig. 7 shows the more detailed information that is available
from the current approach.

5 Discussion

This paper has introduced new methods for calculating quantities of interest in bio-
logical processes and structures which can be modeled using branching processes. It
is hoped that they will prove useful in various areas of biology. The code to carry out
the calculations in Sect. 4.1 and Sect. 4.3 was written in R [36]. The R scripts are
available from the author on request.

Sect. 4.1 is a preliminary investigation into multi-type age-dependent branching
processes as models for macroevolution. There is clearly scope for much further work
here. Sect. 4.2 provides a method which could be used to provide a prior probability
for trees in a phylogenetic analysis program like BEAST [14].
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The example of cell proliferation in 4.3 illustrates how the same method can be
used in other areas. It is complementary to other approaches such as simulation and
saddlepoint methods.

The equations in Sect. 4.2 could also be useful in studies of macroevolution. So far
as I am aware, these provide the most practical method currently available for calcu-
lating the joint probability for topology and node times for multi-type age-dependent
branching processes. As described in Sect. 1.1 there has been much interest in the bal-
ance of phylogenetic trees. A recent study [40] investigates the distribution of branch
lengths in a collection of phylogenetic trees. I am not aware of any study that has used
both topology and node times to match models to data, which should provide more
stringent tests of models. As more data becomes available, especially data which in-
cludes estimates for the dates of the nodes in a tree, I believe that such studies will
become common.

6 Proofs

Theorem 1 can be established using a technique similar to that used in [7, Section
IV.2] for generating functions.

Lemma 1 Let F (i) (1 ≤ i ≤ r) be distributions on [0,∞) with F (i)(0+) = 0 for
all i. Let Sn be the sum of n independent random variables, each of which has a
distribution equal to one of the F (i). Let γ > 0 be a constant. Then there is a θ > 0,
depending on γ, but not depending on n nor on which of the F (i) are involved in Sn,
such that

γn Pr(Sn ≤ t) ≤ (1/2)neθt

Proof For 1 ≤ i ≤ r, let Zi be a random variable with distribution F (i). Since
F (i)(0+) = 0, a number εi > 0 can be chosen so that F (i)(εi) < 1/(4γ). For each i,
choose θi > 0 large enough to ensure that e−θiεi < 1/(4γ). Then

E(e−θiZi) ≤ Pr(Zi < εi)E(e−θiZi |Zi < εi) + Pr(Zi ≥ εi)E(e−θiZi |Zi ≥ εi)

≤ F (i)(εi)E(1|Zi < εi) + E(1/(4γ)|Zi ≥ εi)

< 1/(4γ) + 1/(4γ) = 1/(2γ).

Let θ = maxi θi, so that γE(e−θZi) < 1/2 for all i. Then

γn Pr(Sn ≤ t) ≤ γn Pr(e−θSn ≥ e−θt)

≤ γneθtE(e−θSn )

≤ eθt

n
∏

j=1

γE(e−θYj )

where each Yj has distribution equal to one of the F (i). The second line in the above
derivation uses Markov’s inequality, and the third line uses the independence of the
Yj . Hence γn Pr(Sn ≤ t) ≤ (1/2)neθt. ut
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Proof of Theorem 1. Only the case of equation (1) for X (i) will be proved in detail.
Define X

(i)
0 (t) = 1 − q + (q − p(i))F (i)(t) and for m ≥ 0 let

X
(i)
m+1(t) = X

(i)
0 (t) + p(i)

∫ t

0

f (i)(t − w)

r
∑

j=1

r
∑

k=1

ξ(i)(j, k)X(j)
m (w)X(k)

m (w)dw.

(10)
Firstly we show by induction that 0 ≤ X

(i)
m (t) ≤ 1 for all i and m. Since X

(i)
0 (t) is

linear in F (i)(t), it always lies between 1− q and 1− p(i), so 0 ≤ X
(i)
0 (t) ≤ 1 for all

i. It follows by induction that X
(i)
m (t) ≥ 0 for all i and m, since X

(i)
m+1(t) is a sum of

non-negative terms. If X
(i)
m (t) ≤ 1 for all i, then using

∑r

j=1

∑r

k=1 ξ(i)(j, k) = 1,

X
(i)
m+1 = 1 − q + (q − p(i))F (i)(t) +

p(i)

∫ t

0

f (i)(t − w)

r
∑

j=1

r
∑

k=1

ξ(i)(j, k)X(j)(w)X(k)(w)dw

≤ 1 − q + (q − p(i))F (i)(t) + p(i)

∫ t

0

f (i)(t − w)dw

= 1 − q + (q − p(i))F (i)(t) + p(i)F (i)(t)

= 1 − q + qF (i)(t) ≤ 1,

so it follows by 0 ≤ X
(i)
m (t) ≤ 1 for all i and m.

Now we show by induction that for all i

|X
(i)
m+1(t) − X(i)

m (t)| ≤ (2r2)m+1 Pr(Sm+1 ≤ t) (11)

for some random variable Sm+1 of the type in Lemma 1. For m = 0, equation (10)
gives

X
(i)
1 (t) − X

(i)
0 (t) = p(i)

∫ t

0

f (i)(t − w)

r
∑

j=1

r
∑

k=1

ξ(i)(j, k)X
(j)
0 (w)X

(k)
0 (w)dw.

Now, for every i, j, k and all w, the numbers p(i), ξ(i)(j, k) and X
(j)
0 (w) are all in the

interval [0, 1], so

|X
(i)
1 (t) − X

(i)
0 (t)| ≤

∫ t

0

f (i)(t − w)r2dw ≤ r2F (i)(t) ≤ (2r)2F (i)(t)

establishing (11) for m = 0. If m > 0,

|X
(i)
m+1(t) − X(i)

m (t)| ≤

p(i)

∫ t

0

f (i)(t − w)

r
∑

j=1

r
∑

k=1

ξ(i)(j, k)|X(j)
m (w)X(k)

m (w) − X
(j)
m−1(w)X

(k)
m−1(w)|dw
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and since

|X(j)
m (w)X(k)

m (w) − X
(j)
m−1(w)X

(k)
m−1(w)|

= |
(

X(j)
m (w) − X

(j)
m−1(w)

)

X(k)
m (w) + X

(j)
m−1(w)

(

X(k)
m (w) − X

(k)
m−1(w)

)

|

≤ |X(j)
m (w) − X

(j)
m−1(w)| + |X(k)

m (w) − X
(k)
m−1(w)|

≤ 2 max
j

|X(j)
m (w) − X

(j)
m−1(w)|

and the numbers p(i), ξ(i)(j, k) and X
(j)
0 (w) are all in [0, 1], it follows using induction

that

|X
(i)
m+1(t) − X(i)

m (t)| ≤ 2r2

∫ t

0

f (i)(t − w) max
j

|X(j)
m (w) − X

(j)
m−1(w)|dw

≤ 2r2

∫ t

0

f (i)(t − w)(2r2)m Pr(Sm ≤ w)dw

≤ (2r2)m+1

∫ t

0

f (i)(t − w) Pr(Sm ≤ w)dw.

The integral in the last line can be recognized as a convolution, representing the
cumulative distribution function for the sum of two independent random variables
Sm and Zi, where Zi has distribution F (i). Thus

|X
(i)
m+1(t) − X(i)

m (t)| ≤ (2r2)m+1 Pr(Sm + Zi ≤ t)

which establishes (11). Now Lemma 1 with γ = 2r2 shows that

|X
(i)
m+1(t) − X(i)

m (t)| ≤ (1/2)m+1eθt

for some θ > 0. The sequence of functions X
(i)
m is therefore a Cauchy sequence and

so converges to some function X
(i)
ω . Now let m → ∞ in equation (10). Since the

convergence of X
(i)
m to X

(i)
ω is uniform on any finite interval [0, t0], limits can be

taken through the integral to show that the X
(i)
ω form a solution.

Uniqueness follows by considering V (i)(t) = |Y (i)(t) − X
(i)
ω (t)| where Y (i) is

another bounded solution to (1). Details are omitted.
The other equations (2), (3), and (5) can be dealt with similarly. For (3), the proof

uses induction on n using equation (4). In the case of (5), the proof establishes exis-
tence and uniqueness for a set of one-dimensional equations in t, one for each value
of s. ut
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Proof of Theorem 2. The proof uses general results from Athreya and Ney’s book [7].
Let Nn(t) be the probability that there are exactly n particles surviving at time zero
given an ancestor at time t. Nn(t) is thus like Pn(t) but does not take into account
the sampling at time zero. Let

F (s, t) =

∞
∑

n=0

Nn(t)sn. (12)

F (s, t) is known as the generating function for the process [7, p138].
Let g(s) represent the generating function governing particle production as de-

scribed in [7, p137] and let ρ be the smallest solution of the equation g(s) = s as
described in [7, Section 1.3]. (Note that g(s) is f(s) in Athreya and Ney’s notation,
and ρ is q in their notation.) Restating [7, Theorem 3.1, p143], we have

Theorem 4 If 0 ≤ s ≤ ρ, then F (s, t) is nondecreasing in t, and F (s, t) → ρ as
t → ∞. If ρ ≤ s < 1, then F (s, t) is nonincreasing in t, and F (s, t) → ρ as t → ∞.

In the case of a binary tree, where a particle can only produce zero or two descendants,
g(s) = (1 − p) + ps2, and it follows that ρ = (1 − p)/p if p > 1/2 and ρ = 1 if
p ≤ 1/2. Theorem 2 now follows from the observation that

X(t) =
∞

∑

n=0

Nn(t)(1 − q)n = F (1 − q, t).

ut

Proof of Theorem 3. In the constant rate birth-death process, equations (1), (2), (3),
and (5) simplify to

X(t) = 1 − p + (p − q)e−αt + p

∫ t

0

αe−α(t−w)X(w)2dw (13)

L(t) = qe−αt + 2p

∫ t

0

αe−α(t−w)X(w)L(w)dw (14)

Pn(t) = p

∫ t

0

αe−α(t−w)
n

∑

m=0

Pm(w)Pn−m(w)dw. (15)

b(s, t) = pαe−α(t−s) + 2p

∫ t

s

αe−α(t−w)X(w)b(s, w)dw (16)

The critical and non-critical cases can be handled together. For equation (13), let
g(x) = eαx(X̃(x) − (1 − p)). Then g′(x) can be calculated as αpeαxX̃(x)2, so

p

∫ t

0

αe−α(t−w)X̃(w)2dw = e−αt[g(t) − g(0)]

= X̃(t) − (1 − p) − e−αt(p − q)
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as required to satisfy the equation (13).
Next, for equation (14), let h(x) = eαxL̃(x). Then h′(x) = 2αpeαxL̃(x)X̃(x),

so

2p

∫ t

0

αe−α(t−w)X̃(w)L̃(w)dw = e−αt[h(t) − h(0)]

= L̃(t) − e−αtq

as required to satisfy the equation. Next, for equation (15), write

P̃n(t) = L̃(t)β(t)n−1

for n ≥ 1, where

β(t) =
pq(1 − e(1−2p)αt)

qp + (2p − 1 − qp)e(1−2p)αt

if p 6= 1/2 and

β(t) =
pqαt

1 + pqαt

when p = 1/2. Note that the solution is already proved for P̃1(x) = L̃(x). Assume
n ≥ 2 and that the result is true for P̃i(x) with i < n. Let

j(x) = eαxP̃n(x) = eαxL̃(x)β(x)n−1 = h(x)β(x)n−1

Then, using β′(x) = αpL̃(x),

j′(x) = 2αpeαxL̃(x)X̃(x)β(x)n−1 + αp(n − 1)exL̃(x)2β(x)n−2

so

p

∫ t

0

αe−α(t−w)
n

∑

i=0

P̃i(w)P̃n−i(w)dw

= αe−αt

∫ t

0

pew

n−1
∑

i=1

P̃i(w)P̃n−i(w) + 2peαwP̃0(w)P̃n(w)dw

= αe−αt

∫ t

0

peαw(n − 1)L̃(w)2β(w)n−2 + 2pewX(w)L̃(w)β(w)n−1dw

= e−αt

∫ t

0

j′(w)dw = e−αt(j(t) − j(0)) = P̃n(t)

as required to satisfy equation (15), so the result follows by induction.
Lastly, for equation (16), with s regarded as fixed but arbitrary, let k(x) = eαxb̃(s, x) =

peαxL̃(x)/L̃(s). Then k′(x) = 2αpeαxX̃(x)b̃(s, x) so
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2p

∫ t

s

αe−α(t−w)X̃(w)b̃(s, w)dw

= e−αt

∫ t

s

k′(w)dw = e−αt(k(t) − k(s))

= b̃(s, t) − e−αtpeαsL̃(s)/L̃(s)

= b̃(s, t) − αpeα(s−t)

as required to satisfy the equation. ut
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